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Hole Size in a Spherical Resonator

Jared Kearns

Abstract

When air is blown strongly through a straw and across a hole in a hollow sphere, a high-pitched whistling sound is
heard. This paper tests two models, Helmholtz Resonance and Spherical Harmonics, to determine which most
accurately models this phenomenon. This was done by measuring the frequencies produced when air was blown across
identical spheres with different hole sizes, as well as across spheres of different volumes with identical holes. The
frequencies were found to closely match frequencies predicted by spherical harmonics.

Introduction

Some websites claim that whistling and whistles operate as Helmholtz resonators!?. If a whistle is
blown softly then a certain frequency is produced, however if the whistle is blown harder, then a
louder, higher frequency sound can be produced. The soft, low frequency, sound produced when air
is blown across a hollow sphere with a hole in it has been shown to be accurately modeled by
Helmholtz resonance.? Here we investigate the high frequency sound produced from blowing hard
on a hollow sphere with a hole in it. The effect of the hole and its size on the frequencies produced
will be investigated. It will be determined if this higher frequency sound can be modeled by
Helmholtz resonance.

An alternate model, the applicability of which will
be tested, is spherical harmonics. Spherical
harmonics explain the noise created as a standing
wave within the sphere. The “white” noise of the
air being blown into the hole creates a standing
sound wave inside the cavity with the frequencies
present depending on the dimensions of the
cavity. To test if spherical harmonics govern this
phenomenon the frequencies produced by hollow
spheres of differing volume will be analyzed.
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The simplified equation for finding the speed of sound in a sphere if the volume is known and the
frequency is found, is:

c

fin = Zin (—) Equation 14

2nr

Where fi, is the frequency, zi, represents discrete harmonics created by three-dimensional harmonic
shapes, ¢ is the speed of sound, and r is the radius of the spherical cavity. The harmonics recorded
are determined by the vector coordinates, and the number of modes in the sphere as in figure 1.

Methods

A circular hole of diameter 6.4 mm was drilled in six hollow plastic spheres with volumes ranging
from 26ml to 1135ml and average wall thickness of .0005m + .0003. A microphone was connected
to a computer and set at a data collection rate of 100,000 samples per second for 0.5 seconds. Air
was blown strongly through a straw and across the hole in the sphere at an angle such that a high-
pitched whistling sound was made. The sound was recorded on the computer and an FFT graph was
produced. This was done 6 times for each of the six spheres. It was noted that a lower frequency
could be obtained under these conditions by blowing more softly, but this frequency was not
studied.

To test the effect of the diameter of the hole on the resonant frequencies produced, six identical
hollow, plastic spheres with a volume of 220ml + 10 and a wall thickness of 0.00035m + 0.00005
were drilled with hole diameters ranging from 5.0mm + 0.5 to 13.0mm =+ 0.5. The previous method
was again used to record the frequency produced by each of the six spheres with differing hole
sizes.

The temperature of the air in the room was 27°C 4+ 1 whereas the temperature of the air inside the
sphere while being blown was 32°C + 2. The speed of sound® in the sphere was calculated to be
350m/s £ 3.

Results & Discussion
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Figure 2 The average period squared of the sound produced

proportionality constant is very different than g compared to the volume of the sphere producing the sound.
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that predicted by the Helmholtz equation. Using the given constants, the predicted slope is 500 x
10* s2m3, compared to the slope of the best fit line of 2.9 x10* s?/m3. This clearly indicates that
this phenomenon is not accurately modeled by the Helmholtz equation.
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spherical harmonics will be tested for sound made by the 217 ml sphere with the 4mm radius hole
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It is known that the spherical harmonic equations describe an inversely proportional relationship
between the radius of the sphere and the frequency of the harmonics.> Theoretical frequencies for a
sphere of radius 0.116 m were obtained® and used to determine the theoretical spherical harmonic
frequencies for a sphere of radius 0.037 Average Period and Theoretical Period VS Ball Radius
m. The predicted frequencies of all of the
possible harmonics produced from the
sphere were then compared to the found o
frequencies. Figure 4 clearly shows that
0.0002 |

spherical harmonics accurately models
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Figure 4 The periods of sound produced by the spheres and the

corresponding theoretical frequency. theoretical periods as predicted by spherical harmonics, as
compared to the radii of the balls, for the first resonance mode.
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Given that the equation used to calculate Average Frequency VS Hole Radius
the frequencies of the spherical harmonics 3
assumed a sealed sphere, it is possible 3
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less than 2%.

Finally, in figure 6 the recorded
frequency is compared to the
theoretical frequency for the most
prominent four resonant modes of
spherical harmonics. It can be seen that
the average values are very close to the
theoretical values predicted for those
harmonics.

It is interesting to note that the lower
frequencies predicted by Helmholtz
resonance were occasionally detected
in some of the graphs. However few
graphs showed a clear peak at the
Helmholtz resonance frequency. Also,
only for the smallest three hole sizes
were peaks detected at the frequency
predicted by the Helmholtz equation.

sound produced for the first y=mx+b

harmonic mode, against the radius ™ (Siope): 1985 Hz/m
f the hole in the ball at which the g anocen); 3134Hz
0 Correlation: 0.9373

sound was produced. RMSE: 12.07
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Figure 6 The variation between the recorded value (black) and the
theoretical values (blue) of the frequencies for several modal shapes
(x-axis). The recorded values represent the average frequency
produced by the different hole sizes for the sphere with a volume of
217 ml.

Another issue that should be noted is the fact that each of the trials gave a noticeably different FFT
graph. The relative amplitudes of each of the modes of resonance were different each time, and in

some cases, some modes were not detected. Since the straw was held by hand, and blown with the

mouth, this suggests that the angle and velocity of the airflow could be an important factor in

determining which of the resonance modes is present and which has the highest amplitude. It is

suggested that a mechanical blowing apparatus be constructed so that the effect of wind angle and

velocity could be investigated.
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Conclusion

The spherical harmonic theory seems to accurately describe the phenomenon of the high-pitched
whistling heard when air is blown strongly across a hole in a hollow sphere. It has been shown that
this phenomenon is not modeled by the Helmholtz resonance equation. As all resonant frequencies
measured were slightly lower than the predicted values, it appears that the presence of the hole
causes the frequency to be lower than theoretical predictions. However, as the diameter of the hole
increases it seems that the frequency increases as well, bringing the frequency produced closer to
the theoretical values for all but the first harmonic.
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