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Frequency and Transmission Intensity in a Can-Telephone

Thomas Eliot

Abstract

A can-telephone is a device consisting of two cans connected by a string through each base. The relationship
between the input frequency and the intensity of the transmitted sound was investigated. Frequencies from 230 to
1370 Hz were tested. The system was found to follow the properties of a simple harmonic oscillator in relation to
intensity and frequency, causing the maximum transmitted intensity to appear when the input frequency was close to
the resonant frequency of the bases of the cans.

Introduction

A can-telephone consists of two cans with their bases
facing each other, with each base attached to one end of a
string which is stretched between the cans. Sound
entering the first can causes the base of that can to
oscillate. The oscillation of this base creates longitudinal
waves in the taut string, which force the base of the
second can to oscillate at the same frequency as the
sound. Victoria Prinz noted that for a given frequency the
tension in the string affected the transmission intensity
through the can-telephone, but was unable to determine
the reason.!!!

Figure 1 The cans used

When an elastic object is driven by an external periodic force, the frequency of the oscillation of
the object is determined by the frequency of the driving force. The intensity of a driven
oscillation varies depending on the proximity of the driving frequency to the natural resonant
frequency of the object. The equation for amplitude as a function of frequency in a linear
oscillator is
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where y is the damping constant, w is the driving angular frequency, @, is the resonant angular
frequency, x, is the amplitude of the driven oscillation, and X jthe amplitude of the driver. Using

the fact that intensity is proportional to amplitude squared, equation 1 can be rearranged to give
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Iy = Ly (Equation 2)
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where f'is driving frequency, f;is resonant frequency, /; is input intensity and 7 is transmitted
intensity.

In the can-telephone system, the bases of each can are expected to act as linear oscillators,
experiencing a restoring force as they are displaced by the input sound and the fishing line. The
transmission intensity for the system would then be determined by the natural resonant
frequencies of the can bases and the frequency of the input sound, as in equation 2.

Method

The can-telephone used was constructed by puncturing holes in the center of the base of each
can, threading through fishing line, and tying a knot at the end of line.The cans used had
cylindrical cardboard walls, with a circular metal base.The length of the fishing line used was
162.0 + 0.2cm, the diameter of the base of the can was 7.7 = 0.1cm,
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Figure 2 The experimental apparatus.

In reference to figure 2, the weight and pulley on the end of the string attached to the second can
was used to put 5.39N+0.0IN of tension on the fishing line and the bases of the cans. The
tension force on the bases of the cans also affects their natural resonant frequencies, so the mass
was used to keep the tension constant and quantifiable. The speaker attached to the freqency
generator was suspended inside the first can without contacting it, and used to generate the input
sound for the can-telephone at different frequencies. Altering the frequency of the frequency
generator also affected the intensity of the sound, so a decibel meter was placed inside the can at
a fixed location and the output of the speaker was adjusted to keep the decibel level constant.
The pressure microphone in the second can was also suspended without contacting the can, and
was used to measure sound pressure received in the second can, which was converted to
intensity.
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Sound with a constant intensity at 9 frequencies ranging from 229.4Hz to 1373.3Hz was played
into the first can, and the transmitted sound was recorded using the pressure microphone, with
an experimental uncertainty of +7 yWm™. Each frequency was tested 3 times.

The frequency of the sound was determined by performing an FFT on pressure data from the
microphone, and had anuncertainty of +0.2 Hz. Pressure data from the microphone was
converted to intensity through the equation

P2
I= _2 (Equation 3)[3]
oV

where [ is intensity, p is the mass density of air, v is the speed of sound in air and P is the
pressure measured by the microphone.

To ensure equation 2 was applicable to the bases of the cans, it was determined experimentally
that they followed Hooke’s law. One can was suspended vertically, and a force probe and
various masses were hung from the fishing line strung through its base. Varying the force across
10 values from 0 to 15N, the displacement at the center of the base was measured using vernier
calipers. The natural resonant frequency of the bases was also found by recording the sound
produced when the base of the can was struck with no tension on the string.

Results and Discussion

Figure 3 shows that the cans approximately follow Hooke’s law, in that the displacement of the
base is proportional to the force on the base, meaning equation 2 may apply to them.

Figure 4 shows the relationship between source frequency and transmitted intensity is
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This suggests that the second can

has greater significance in determining the frequency that produces the maximum intensity in the
can-telephones. Further research, including switching the transmitting and receiving cans would
be needed to further understand this relationship.

It must be noted that when measuring the natural resonant frequency of the base of the cans, it
was found that the force on the string through the base affected the natural resonant frequency of
the base of the cans, with higher forces causing lower resonant frequencies. Also, it was found
that even with no force on the base of the can, the orientation of the can affected the resonant
frequency. In the case investigated in this lab, the cans were horizontal (the base being vertical),
so the natural resonant frequency was measured with the cans horizontal. More research would
be required to determine the nature of these phenomena.

An issue which affects the certainty and applicability of equation 3 is the number of data points
close to the peak of intensity in figure 4. While there are 9 total points of data, there are only two
data points close to the natural resonant frequency, and both of these points are at frequencies
lower than the natural resonant frequency. It is recommended that this investigation be repeated
with many more measurements near the peak frequency. It would also be valuable to investigate
how tension on the string affects the intensity of transmission of the sound.

Conclusion

The relationship between driving frequency and intensity of a sound wave propagated through a
can-telephone system follows the model of a driven linear oscillator. Maximum transmitted
intensity occurs when the driving frequency is equal to the natural resonant frequency of the
bases of the cans. For the specific can-telephone system used in this experiment, a driving
frequency of 517+4 Hz causes the maximum intensity of sound received at the second can to be
equal, within uncertainties, to the natural resonant frequency of the bases of the cans.
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