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Water Oscillation in an Open Tube
Doh Hoon Chung

Abstract

When an open tube is placed in a tank of water, covered on top, raised, and then uncovered, the water
inside the tube will oscillate. The characteristics of the oscillation of the water inside the tube were
studied. It was shown that, for large oscillations, the top half-period was longer than the bottom half
period due to the increased mass of the water column. For small oscillations, it approached simple
harmonic motion, with the square of the period varying with mean length, as predicted by theory. An
end correction was also shown to exist, due to the motion of the water outside the bottom of the tube
during the oscillation. The end correction was shown to be independent of the mean length of the water
column, as predicted.

Introduction

A simple harmonic motion is an oscillation for which the acceleration is proportional to
the displacement. An example is the oscillation of mass on a spring that obeys Hooke’s
law. The period of a simple harmonic motion is independent of the amplitude. A simple
harmonic oscillator is illustrated in figure 1.
The period of oscillation and the amplitude
remain constant throughout the oscillation.

Damped simple harmonic motion occurs %7/\ /\
when a dissipative force opposes the motion, L

removing energy from the oscillation. : \/ e
Damping may be due to friction or air

resistance. To a very good approximation,
the period of damped simple harmonic
motion remains the same as the amplitude
gradually decreases. The motion of a
damped simple harmonic oscillator is
illustrated in figure 2.

Fig 1: Simple Harmonic Motion

The equation for the period of a mass

oscillating on a spring for damped and /\ [\ [\ /\ NN P
undamped motion is the same. The formula  "[{ [T[ [*T]° UUVUU e
for the period is ... U U U

m .
T=2r / 7 (Equation 1)  Fig 2: Damped Simple Harmonic Motion

... where m 1s the mass of the object oscillating and & is the spring constant (or force
constant).
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When a cylindrical tube, open on both ends, is placed into water, oscillations of the
water column inside the tube can be induced by closing the top end of the tube, raising
the tube, then opening the end, as shown in figure 5. It is expected that the motion of the
oscillating water in the tube will be simple harmonic motion. The period is expected to
depend on the mass of the water and the acceleration due to gravity as follows.

— The restoring force for this oscillation is the
MaxWater weight of the water above or below the
ST equilibrium  position. F'=-k(Ax) is the
¢/\ expression for the restoring force for any simple
Al Min-Waer harmonic oscillation where a = acceleration of
A Level water, —Ax = negative displacement of water
¥ from equilibrium level, m = mass of water, k =
. force constant. Since F =ma , ma =—k(Ax) ,
hence...
A
>T\\, % = —g. (Equation 2)
a

Fig 3: Water oscillation in a tube

From figure 3, the mass of the water in the tube m is, m =I[Ap, where A4 is the cross
sectional area of the water column, p is the density of water and / is the length of water
column. Likewise, —AxAp is the difference between the mass of water when it is at the
equilibrium point of oscillation and the mass of water when it is at the minimum level
(indicated by dotted lines). Hence, F =ma =I[Apaand F =—-AxApg which gives

la =-Axg. (Equation 3)

: . [ m . . .
If equations 2 and 3 are combined, —=—. When we substitute this to equation 1, the

g
period of the water oscillating in a tube is ...

——— T=2r \/z (Equation 4)
TR g
; ... where / is the length of the water column and
t g is gravity.
S — From equation 4, one expects that for large
o= foy oscillations the half-period for the top half and

the bottom half of the oscillation will vary.
_ . This 1s because the displacement of the water
Fig 4 Water Tube and End Correction  Jevel, hence the length of the water inside the
tube will be significantly larger for the top half-
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period than for the bottom half-period. For small oscillations the length of the water
column varies less; therefore it is expected that the water oscillation may be
approximated by simple harmonic for small oscillations. Under the condition of a small
oscillation, one could find the length of the water movement below the tube. Because
the cylindrical tube is open ended, it is expected that the effective mass of oscillating
water will be more than the actual mass enclosed in the tube because there will be an
interaction between the oscillation and the water outside the open end. The predicted
equation for the determination of the end correction of the water oscillation in a
cylindrical tube can be derived as follows.

From the diagram, the actual length of water oscillating / is given by, / =/ +1,, where
lp = length of end correction, /, = depth of tube under water. If this is substituted to
equation 4, and rearranged for /y, [y is ...

T 2
l, = g(—j -1 . (Equation 5)
2

This equation implies that the end correction is independent of /, (the initial depth of the
tube into the water before oscillation). This is expected because the water under the tube
is only affected by the movement at the end of the tube, not by the entire mass of the
water in the tube.

To find the end correction of water oscillation in a cylindrical tube, it must be
demonstrated that the motion of water approaches a damped simple harmonic motion
for small oscillations. This can be shown by analyzing the half periods of an entire
oscillation; from large oscillations to small oscillations (motion where the displacement
is within 0.02m may be considered as small oscillation). When it is demonstrated that
the motion is approximately damped simple harmonic for small oscillations, then one
can proceed with calculating the end correction. Small oscillations can be observed for
different equilibrium water column lengths (/) (figure 4). Then using equation 5, and
the period and equilibrium depths (/) for each trial, the end correction can be calculated.

Methods

The procedures of this experiment involved two
parts; Firstly measuring oscillations of varying
amplitude to determine whether the oscillation of
water in a tube is damped simple harmonic
motion;, Secondly measuring small oscillations
with the tube at varying depths.

Half Periods and Simple Harmonic Motion

A water tank with height 0.815m was filled
with water. A 50 mm diameter, transparent,
cylindrical tube, open at both ends, was put

into the water. A small Styrofoam ball was ”{/@ v
Fig 5: A single frame showing the water

in the tube and the tank
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placed in the tube, to make it easier to track the oscillation on the video. The tube was
held vertically so that approximately 1/4 of its total length was under the water. With
one hand blocking the top end of the tube, the tube was pushed down in to the water.
The hand was then released; the oscillation was recorded using a camera.

The procedure was repeated for oscillations in the opposite way; the tube was let to
stand vertically at the lowest possible point in the water tank. With one hand blocking
the top end, the tube was lifted up until 3/4 of its length was out of the water. The hand
was then released and the motion of the water level was recorded on the camera (figure
6).

Fig 6: Screen Shots of Water Oscillation

End Correction

The previous procedure was repeated for small oscillations. A meter stick was attached
to the side of the tube to indicate how deep the tube went into the water. To create small
oscillations, the initial displacement (length to which the tube was pushed down from
the top) was controlled to 0.02m. The oscillation recordings were started out with the
tube at shallower depths, 0.045m, to deeper depths, 0.465m. The period of each motion
was calculated by taking an average of time of 4-6 consecutive periods. The end
corrections were found using the data of the periods and equation 5.
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Results and Discussion

Half Periods and Simple
Harmonic Motion

A line was fitted manually to
indicate the equilibrium point
of the oscillation. Appropriate
linear fits were made along the
graph to find the intersection
points between the oscillation
data and the manual fit. Using
“interpolate” in logger pro, the
value of the time at each
intersection was found. The
difference between the time
value of each consecutive
intersection was found and
plotted on a graph as shown in
figure 8.

Figure 8 shows that, for large
oscillations, the half-periods
are greater for the top half of
the oscillation than for the
bottom half, as predicted. As
the  oscillations  become
smaller, the difference in time
for the top and bottom half
periods is reduced, as
expected. Finally, it can be
seen that the time for one
complete oscillation remains
constant at 1.4 £ 0.1 s.
The oscillation in the tube is
simple harmonic motion to a
good approximation.  The
quality of the data does not
allow an analysis of whether
the length of the half-periods
as a function of amplitude
and column length can be
modeled on equation 4.
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Fig 7: Oscillation of water in a Tube. The data was used to
calculate half periods and whole periods as the oscillation was
damped.
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Fig 8: Time Interval between Half Periods. The difference in half
periods reduces with amplitude, while the whole period remains
constant.
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End Correction

The period of the

oscillation for small -
amplitude oscillation 0.4 Linear Fit for: Data Set | Length
. y = mx+b
as a function of the m (Slope): 0.248 +/- 0.001 m/s"2
median length Of the b (Y-Intercept): -0.017 +/- 0.001 m
water column in the 03 Correlation: 1.000
£ RMSE: 0.001

tube was analyzed. =
The results are shown g o
in figure 9. =

0.1
The graph shows a
linear relationship ...
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Fig 9: Length of mean water column versus Period Squared for small amplitude

... where y = length of  oscillations. The relationship is linear within uncertainty, showing that the

the water column in oscillation is simple harmonic motion and the end correction is independent of

the tube (/, in figure column length, as predicted by equation 6.
4) , x = period
squared, m = 0.248 m/sz, and b =-0.017 m.

If equation 5 is rearranged, it gives:--

I = (47% - sz ~1,. (Equation 6)
Thus, g2 is the slope, and —/, is the y-intercept b in figure 9.
Vs

If values of g = 9.8 and 7= 3.14 are used, % =0.248489 ~ 0.248 m/s, showing that
V4

for small oscillations, equation 6 is a good approximation of the motion of a water
column in a tube. The prediction of an end correction is supported. The end
correction is shown to be 0.017 m for this tube, and is shown to be independent of the

length of the water column.
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Conclusion and Evaluation

The results showed that the water oscillation in a cylindrical tube is not a damped
simple harmonic motion when the displacements are large. The half-period for the top
half is significantly larger than for the bottom half due to the greater mass of the water
column during the top half of the oscillation. Although this does not imply simple
harmonic motion, it was shown that the whole period remains relatively constant for
large amplitude oscillations. The results show that the oscillation can be approximated
as damped simple harmonic motion for small oscillations, as described by equation 4. In
figure 9, the square of the period is shown to vary proportionally with the length of the
water column. It is also demonstrated that the end correction is independent of the mass
of the water oscillating in the tube, and that end correction can be modeled by equation
6. For the specific tube used in this investigation, the end correction was determined to
be 0.017 m.

There were two major weaknesses in the procedure which reduce confidence in the
conclusions. Firstly, when the tube was covered and raised out of the water, it was held
by hand, rather than being clamped in place. Because the observation of the water
motion went over a prolonged period, for example, 40 seconds, the position of the tube
may have changed due to hand vibration or other body movement; the tube may have
gone into the water deeper, or the tube may have been tilted to an angle. Secondly, the
quality of the video made it difficult to accurately track the oscillation of the water. A
high-speed video with higher resolution would allow more precision in determining the
position of the water level over time as it oscillated. This would also make it possible to
determine if the difference in half-periods for large amplitude oscillations could be
modeled by the proposed theory.

Further research could be conducted into the affect of the diameter of the tube on the
end correction. The affect of the density and viscosity of the liquid on the period and
end correction could also be investigated.
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