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Abstract

The relationship between the angle of a spinning glass disc and its rate of axial precession was investigated.
The spinning disc was recorded with a high-speed camera and the angle and rate of precession of the disc
determined using video analysis. The behaviour of the disc was compared with a theoretical model. It was
found that the rate of axial precession of the real disc deviated slightly from the predictions of the theoretical

model.
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I. INTRODUCTION

Spin a coin on a table. It moves with a spinning, rolling
motion, getting lower and lower while spinning faster
and faster until it stops. Another example of this motion
is Euler’s Disc, marketed by Joseph Bendik as a
scientific-educational toy. Bendik named the toy after
Leonhard Euler, who studied the relevant theory in the
18th century.! Euler’s Disc consists of a heavy metal
disk and a mirror-like base approximately three times
the diameter of the disk, shown in Figure 1. An Euler’s
Disc moves just like a spinning coin, but spins for a
much longer time. While the duration of spinning is
theoretically mass independent,’ the Euler’s Disc spins
for much longer due to the combination of high mass
and low friction.

When a disc spins on a flat surface, it exhibits a rolling
motion. This is illustrated in Figure 2, where the rolling
motion of a disc of radius, r, can be seen as a
combination of an axial precession, w,, and an
azimuthal rotation, wy. As the disc spins it loses energy
and there will be a decrease in the angle (6) the disc
forms with the surface, with a corresponding increase

Figure 1. A spinning Euler’s Disk.?

in the disc’s rate of axial precession as its azimuthal
rotation gradually decreases. *

A mathematical model, derived by Milan Batista,
which assumes an ideal disc with negligible
thickness and friction, gives the relationship
between axial precession and the disc angle” as:

4g
rsinf

wy = (1)

The equation can rearranged in terms of the period,
T, as:
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Here we investigate whether Batista’s theoretical
model can be applied to a real spinning disc with
non-negligible thickness and friction.

gravity

Wp
. | .
(precession) i

Y

Figure 2. A disk spinning on a flat surface.®
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II. METHODS

A 60 mm diameter, 5 mm thick glass disc, shown in
Figure 3, was spun on a smooth granite surface. A
video camera, recording at 240 fps, was placed
horizontally at the level of the surface, so that the
angle of the disc could be accurately measured. The
disc was spun starting on its edge and recorded until
it stopped spinning. Four complete spins were
recorded and analysed using the Tracker video
analysis program.

For each rotation, the angle (6 in Figure 2) was
measured when the disc was edge-on to the camera,
as shown in Figure 4. The time for one complete
rotation was measured for each rotation, along with
the average angle for that rotation. This was done
for each rotation until the disc stopped spinning.
Angle and period were measured for each of the
four recorded spins. The spinning motion of the disc
was unstable for angles above 50° and below 5°, so
the data was only analysed for angles within this
range.

III. RESULTS AND DISCUSSION

The relationship between the rate of axial
precession and the angle the disc forms with the
surface is shown in Figure 5. As can be seen, as the
disc angle decreases, the rate of angular precession
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Figure 5. Mean Angle (6) vs the Rate of Axial
Precession with Equation 1 fit to the data.
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Figure 3. showing the diameter, radius, thickness and
mass of the Euler’s Disk used for this experiment.

Figure 4: a sample from video analysis. The two orange
lines show the angle formed by the plane of the disk and
the base.

increases. According to Batista's Equation, an
inverse root relationship is predicted between sinf
and wy,.

The fit of Bautista’s model to the data gives:
wy, = 34.2s7! X (sing)~%’ 3)

It is clear that while the results for the glass disc
follow the general trend predicted by Bautista’s
model, it is not a perfect fit. At high angles, the
angular frequency is higher than predicted, and at
low angles, it is lower. It is likely that the deviation
of the results for the disc used here from the
theoretical model is due to slipping’ and the non-
zero thickness of the disc. Further research is
needed to confirm this.

The theoretical model, represented as Equation 2,
suggests a proportional relationship between sin(8)
and the period of precession squared (T7) with a

2
roportionality constant of —. For the disc used
prop g
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Figure 6. Presenting the results showing the positive
proportional relationship between sin(6) and T~.

here, this constant has a value of 0.0303 +
0.0003 s*. Graphing the results as T vs sin(6), as
in Figure 6, gives a proportionality constant of
0.0302 s, which is only 0.4 % less than predicted.
It is clear from Figure 6 that a proportional fit is not
the best fit, as the period is greater than predicted
for low angles and less than predicted for high
angles. So while it is clear that the behaviour of the
real disc does not follow theory, the deviation is
very small. Figure 6 also shows that the periods
become less consistent at larger angles, confirming
that the precession of the real Euler’s Disc is less
stable at larger angles.

A linear relationship is fit to the results, as in Figure
7, but clearly does not pass through the origin, and
has a slope that is 20% below the theoretically
predicted value. However, it has a higher correlation
than the proportional fit, hence is a more accurate
empirical model for the behavior of the disc within
the range of angles tested here. Thus, the empirical
relationship between the period of axial precession
as a function of disc angle for the disc used here can
be expressed as:
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Figure 7 A linear relationship gives a better fit to the
results in figure 5.

approaches 90°. For a real disc, the spinning motion
at angles above 50° became unstable, likely due to
the effects of the non-zero thickness of the real disc.
Further research is suggested to confirm if and how
friction and the thickness of the disc affect the
stability of the spinning motion and the deviation of
the behaviour from theory.

IV. CONCLUSION

Batista’s theoretical model gives a reasonably close
approximation of the spinning behaviour of the real
glass disc used in this investigation for disc angles
ranging from 5° to 45°. Within this range, the square
of the period of axial precession is proportional to
the disc angle. The disc behaviour deviated slightly
from the theoretical predictions, with the actual
period being greater than predicted for low angles,
and less for high angles.
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