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Abstract 
The relationship between the angle of a spinning glass disc and its rate of axial precession was investigated. 
The spinning disc was recorded with a high-speed camera and the angle and rate of precession of the disc 
determined using video analysis. The behaviour of the disc was compared with a theoretical model. It was 
found that the rate of axial precession of the real disc deviated slightly from the predictions of the theoretical 
model.  
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I. INTRODUCTION 
 
Spin a coin on a table. It moves with a spinning, rolling 
motion, getting lower and lower while spinning faster 
and faster until it stops.  Another example of this motion 
is Euler’s Disc, marketed by Joseph Bendik as a 
scientific-educational toy. Bendik named the toy after 
Leonhard Euler, who studied the relevant theory in the 
18th century.1 Euler’s Disc consists of a heavy metal 
disk and a mirror-like base approximately three times 
the diameter of the disk, shown in Figure 1.  An Euler’s 
Disc moves just like a spinning coin, but spins for a 
much longer time.  While the duration of spinning is 
theoretically mass independent,2 the Euler’s Disc spins 
for much longer due to the combination of high mass 
and low friction.  
 
When a disc spins on a flat surface, it exhibits a rolling 
motion. This is illustrated in Figure 2, where the rolling 
motion of a disc of radius, 𝑟, can be seen as a 
combination of an axial precession, 𝑤!, and an 
azimuthal rotation, 𝑤". As the disc spins it loses energy 
and there will be a decrease in the angle (𝜃) the disc 
forms  with  the  surface,  with a  corresponding  increase 
 

 
Figure 1. A spinning Euler’s Disk.3 

 
 
in the disc’s rate of axial precession as its azimuthal 
rotation gradually decreases. 4  
 
A mathematical model, derived by Milan Batista, 
which assumes an ideal disc with negligible 
thickness and friction, gives the relationship 
between axial precession and the disc angle5 as: 
 

             𝜔! = # 4"
#$%&'

                    (1) 

 
The equation can rearranged in terms of the period, 
𝑇, as:  
                        

       𝑇2 = !2"#$%&
'

                     (2) 
 
Here we investigate whether Batista’s theoretical 
model can be applied to a real spinning disc with 
non-negligible thickness and friction. 
 

         
Figure 2. A disk spinning on a flat surface.6 
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II. METHODS 
 
A 60 mm diameter, 5 mm thick glass disc, shown in 
Figure 3, was spun on a smooth granite surface.  A 
video camera, recording at 240 fps, was placed 
horizontally at the level of the surface, so that the 
angle of the disc could be accurately measured.  The 
disc was spun starting on its edge and recorded until 
it stopped spinning.  Four complete spins were 
recorded and analysed using the Tracker video 
analysis program.   
 
For each rotation, the angle (𝜃 in Figure 2)  was 
measured when the disc was edge-on to the camera, 
as shown in Figure 4.  The time for one complete 
rotation was measured for each rotation, along with 
the average angle for that rotation. This was done 
for each rotation until the disc stopped spinning.  
Angle and period were measured for each of the 
four recorded spins. The spinning motion of the disc 
was unstable for angles above 50˚ and below 5˚, so 
the data was only analysed for angles within this 
range. 
 
 
III. RESULTS AND DISCUSSION 
 
The relationship between the rate of axial 
precession and the angle the disc forms with the 
surface is shown in Figure 5.  As can be seen, as the 
disc angle decreases, the rate of angular precession  
 

 
 

Figure 5.  Mean Angle (𝜃) vs the Rate of Axial 
Precession with Equation 1 fit to the data. 
 
 

 
 

 
 

Figure 3. showing the diameter, radius, thickness and 
mass of the Euler’s Disk used for this experiment.  
 

 
 

Figure 4: a sample from video analysis. The two orange 
lines show the angle formed by the plane of the disk and 
the base.  
 
increases.  According to Batista's Equation, an 
inverse root relationship is predicted between 𝑠𝑖𝑛𝜃 
and 𝑤!.  
 
The fit of Bautista’s model to the data gives: 
 
                 𝑤( = 34.2𝑠)1 × (𝑠𝑖𝑛𝜃))0.5         (3) 

 
It is clear that while the results for the glass disc 
follow the general trend predicted by Bautista’s 
model, it is not a perfect fit.  At high angles, the 
angular frequency is higher than predicted, and at 
low angles, it is lower.  It is likely that the deviation 
of the results for the disc used here from the 
theoretical model is due to slipping7 and the non-
zero thickness of the disc. Further research is 
needed to confirm this. 
 
The theoretical model, represented as Equation 2,  
suggests a proportional relationship between 𝑠𝑖𝑛(𝜃) 
and the period of precession squared (𝑇2) with a 
proportionality  constant of  #

!$
%

.   For  the  disc  used 
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Figure 6. Presenting the results showing the positive 
proportional relationship between 𝑠𝑖𝑛(𝜃) and 𝑇2.  
 
here, this constant has a value of 0.0303±
0.0003	𝑠2. Graphing the results as 𝑇2 vs 𝑠𝑖𝑛(𝜃), as 
in Figure 6, gives a proportionality constant of 
0.0302	𝑠2, which is only 0.4 % less than predicted.  
It is clear from Figure 6 that a proportional fit is not 
the best fit, as the period is greater than predicted 
for low angles and less than predicted for high 
angles.  So while it is clear that the behaviour of the 
real disc does not follow theory, the deviation is 
very small. Figure 6 also shows that the periods 
become less consistent at larger angles, confirming 
that the precession of the real Euler’s Disc is less 
stable at larger angles. 
 
A linear relationship is fit to the results, as in Figure 
7, but clearly does not pass through the origin, and 
has a slope that is 20% below the theoretically 
predicted value. However, it has a higher correlation 
than the proportional fit, hence is a more accurate 
empirical model for the behavior of the disc within 
the range of angles tested here. Thus, the empirical 
relationship between the period of axial precession 
as a function of disc angle for the disc used here can 
be expressed as:  
 

       𝑇2 = 0.0261	𝑠2 ⋅ 𝑠𝑖𝑛(𝜃) + 0.00167	𝑠2     (4) 
 
According to theory, 𝑤! is predicted to approach 
infinity as the disc angle approaches zero. In reality, 
the limitations of the friction between the disc and 
the surface imply that the disc will no longer 
maintain a stable motion at very low angles.  Theory 

also predicts that 𝑤! will approach 0&%
$

 as the angle 

 
 

Figure 7 A linear relationship gives a better fit to the 
results in figure 5.  
 
approaches 90˚. For a real disc, the spinning motion 
at angles above 50˚ became unstable, likely due to 
the effects of the non-zero thickness of the real disc. 
Further research is suggested to confirm if and how 
friction and the thickness of the disc affect the 
stability of the spinning motion and the deviation of 
the behaviour from theory. 
 
 
IV. CONCLUSION 
 
Batista’s theoretical model gives a reasonably close 
approximation of the spinning behaviour of the real 
glass disc used in this investigation for disc angles 
ranging from 5˚ to 45˚. Within this range, the square 
of the period of axial precession is proportional to 
the disc angle. The disc behaviour deviated slightly 
from the theoretical predictions, with the actual 
period being greater than predicted for low angles, 
and less for high angles.  
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