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Abstract

Water clocks measure time by controlling the flow of water into a container. Ancient Persians used the
sinking time of Fenjaans, bowls with holes in the center, as a metric for time. The relationship between hole
diameter and sinking time of cylindrical containers was investigated. A theoretical model was derived using
Torricelli’s Law and Archimedes’ Principle. The experimental relationship was found by drilling holes with
diameters ranging from 2 to 13 mm in the center of nearly cylindrical stainless-steel containers and
measuring their sinking time. It was found that there was a proportional relationship between the sinking
time and the inverse square of the hole diameter with a proportionality constant which matched, within
uncertainties, the proportionality constant predicted by the theoretical model.
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I. INTRODUCTION

Water clocks were commonly used for time
measurement around the world before the
introduction of pendulum clocks. One of the earlier
forms of a water clock was a bowl with a hole in
the center of the base, known as a Fenjaan in
Persian (figure 1). In ancient Persia, farmers used
Fenjaans to ensure equitability in water
distribution. The Fenjaans measured the time each
farmer could open the irrigation channels to their
fields.! Even today, water clocks are still in use. In
southern Thailand, water clocks are used to time
the rounds in traditional gamecock crowing
competitions.

This paper aims to develop a theoretical model for

Figure 1. A Fenjaan sinking in water!.

time of cylindrical stainless-steel containers, so
that sinking time can be predicted given hole
diameter and bowl dimensions. Though empirical
data showing a correlation between hole diameter
in containers and sinking time has been published,’
this study aims to quantify the relationship and
compare the theoretical model with the
experimental results.

Torricelli’s law states that the relationship between
the velocity (v) of water which flows through a hole
of small diameter, and the height of fluid above the
position of the hole (k) is expressed by the
formula,’

v=,/2gh . (1)

In the situation normally covered by Torricelli's
law, the water is flowing out of a hole in a
stationary container, while in the case of this
investigation, the water flows into the container as
it sinks down into the water. Water clocks are
effectively an inverse application of Torricelli’s
law: the velocity of the water flowing into the
container is predicted to be proportional to the root
of the height difference between the water level
inside and outside the container.

For a stable floating container (figure 2a), the
upward buoyant force is equal to the weight of the
fluid that the body displaces, according to
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Figure 2. Diagrams for container sinking and
simplified free body diagrams for t; (a) and tr (b).

Archimedes’ principle.* For this investigation, the
buoyant force and the weight acting on the
container at the time when it is first placed in the
water (¢;), and just before sinking (#), will be
calculated using the assumption that there is no
hole in the container. This approximation was
made because the container sank at a slow rate
where the acceleration was near zero. Under such
an assumption, the weight (W) and buoyant force
(F) for the sinking container at the beginning (%)),
shown in figure 2a, can be expressed as equation 2,
where V), and p, are the volume and density of the
container walls, A, is the cross-sectional area of the
container, pris the density of the fluid, and 4 is the
initial difference in the water levels,

Vwp,,9 = Achpfg . (2)

Rearranging the equation to solve for h, we obtain
equation 3,

_ Ywpy,
= G)

When the container is almost submerged (figure
2b), the buoyant force on the walls of the container
must be considered to determine the effective
weight (W.) of the container. As most of the
container is submerged in water, the weight of
water displaced by the walls causes a buoyant force
on the walls and decreases the effective weight.
This gives equation 4 for the effective weight and
buoyant force for the final time just before sinking,
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Vi (pw - pf) g=Achp.g, (4)
and equation 5 for the final height of the container,

VW(PW_Pf)
AcPf ’

h= (5)

The buoyant force decreases as more water fills the
container, so the equation for the height, given a
certain depth of water in the container (y) can be
expressed as equation 6, where 4. is the total height
of container.

VW(PW_Pfth)
AcPf )

h = (6)

Since the instantaneous flow rate (Q) is the product
of the area of the hole (4, or %dz) and velocity (v)

but also the product of the area of the container (4.)
and the instantaneous rate of change of the water
level in the container (dy./dt), equation 7 can be
obtained,

Q=Aw="d"[2gh=4.2. (1)

¢ dt

Rearranging equation 7 in terms of an integral of
dy./dt and substituting / from equation 6, gives

cPf fhc 1 . 8)

m dyC (

Solving the definite integral from y = 0 to y = A,

gives,
_SA/ZhC P Py pf % d-2 ©
1l ©)

By substituting the values for the measurements of
the container and the fluid wused for this
investigation into equation 9, the proportionality
constant between the sinking time and the hole
diameter for the tested container was determined to
be,

fdt——

Ap N 2Vyg

t =(1.02%x 103 m2s)d~2.  (10)

While a proportional relationship between sinking
time and the squared reciprocal of hole diameter is
predicted, it is expected that there will be a
threshold value for very small hole diameters
where water can no longer flow through the hole
due to adhesion and surface tension, the model will
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then no longer be valid. In addition, viscous drag
and the resulting turbulence in the fluid flow is
expected to decrease the effective flow rate and
increase the sinking time of the container
systematically, compared to the times predicted by
the model.’

II. METHODS

Six containers with dimensions shown in figure 3
and mass of 83 = 3 g were drilled with holes with
diameters varying from 2 mm to 13 mm. Then, the
sinking time of each of those containers was
recorded six times. The containers were dried after
each trial. The diameter of the container was
measured at relevant points and the weighted
average diameter was determined and used when
calculating the proportionality constant in equation
10. The density value of the stainless steel for the
proportionality constant was obtained from the
Engineering Toolbox.® Measurement uncertainty
was mainly affected by the timing uncertainty and
centering of the drilled holes. Uncertainty in timing
was estimated by determining the variability in
multiple trials, while uncertainty due to errors in
hole size and centering was estimated by drilling a

85.00+0.05 mm

Figure 3. Dimensions of the container used. Container
walls were 2.00 + 0.05 mm thick.
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Figure 4. Empirical fit for the relationship between
sinking time and hole diameter.
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5 mm hole in three separate containers and
determining variability in sinking time of the three.

ITII. RESULTS AND DISCUSSION

Figure 4 and figure 5 show that hole diameter (d)
and sinking time (t) for the container tested has the
relationship,

t = (1.07 £0.06 x 1073 m?2s)d~2 . (11)

As shown in figure 5, the experimental fit is
consistent with the theoretical model within
uncertainties, with only a 5% difference between
the experimental data and the theoretically
predicted constant. This confirms the validity of
the assumptions that energy loss due to turbulence
and viscous drag were negligible, and that the hole
diameters tested were in the range where
Torricelli’s law is applicable.

Bowls with larger holes consistently took slightly
longer to sink compared to the derived theoretical
model than the smaller holes, as shown in figure 6.
The gradient generated from the first 4 points
deviated largely, with a gradient 12% higher than
the original and 18% higher than the theoretical
gradient, showing that larger holes generally took
longer to sink compared to smaller holes. It is
possible that for larger holes, the assumption of
negligible acceleration during sinking was invalid,
causing the model’s predictions to be too low.
Another possible explanation for the greater
deviation from the model is that turbulence and
viscosity effects had a more significant impact at
larger hole diameters, although more work must be
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Figure 5. Comparison between the empirical results
and theoretical model for the relationship between
sinking time and squared reciprocal of hole diameter.
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Figure 6. Figure zoomed to the first 5 data points. The
red fit represents the gradient for first 4 data points.

done both theoretically and experimentally to
confirm and explain this observation. The
turbulence caused by the roughness in the drilled
hole walls might have significantly increased
energy losses and this would have increased the
sinking time of the containers.

Another factor that might have caused a deviation
was the inconsistency in locating the center of the
container in the drilling process. Especially for the
smaller diameter values, the container tilted to one
side before the bottom of the container was fully
covered with water, even causing minor
oscillations at the beginning. As these factors were
not considered in the derived model, it is possible
that these factors caused the sinking time for the
larger diameter holes to deviate from the
theoretical model slightly more than the smaller
holes.

The theoretical model derived here is shown to be
valid for hole diameters from 2 mm to 13 mm. It
is expected that viscosity is likely to be a factor
increasing sinking time for very small holes. For
relatively large holes the acceleration of the
container may be non-negligible, rendering the
model invalid. Further research is needed for
values outside the range tested here, in order to
construct a more comprehensive model for the
relationship between hole diameter and sinking
time.
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IV. CONCLUSION

A theoretical model describing the relationship
between the hole diameter and sinking time of a
water clock was derived and tested for validity. It
was shown that, for a nearly cylindrical metal
container with dimensions shown in figure 1, and
for hole diameters from 2 mm to 13 mm, there is a
proportional relationship between inverse square
of hole diameter and sinking time. The
experimental proportional constant was shown to
be 5% lower than the value predicted by the
theoretical model, likely due to the unaccounted
energy losses from viscous drag and turbulence as
the water flows through the holes.

REFERENCES

1. Holmes, T. (2016, February 22). Object of
Intrigue: Ancient Persian Water Clocks.
Retrieved July 6, 2019, from https://www.atlas
obscura.com/ articles.

2. Greer, Allan and Kincanon, Eric. (2000). An
experiment with Saxon bowls. The Physics
Teacher. 38. 112-112. 10.1119/1.880442.

3. Otto, J., and McDonald, K. T. (2018, September
15). Torricelli’s Law  for Large Holes.
Princeton: Joseph Henry Laboratories.

4. Munson, B. R., Okiishi, T. H., Huebsch, W. W.,
& Rothmayer, A. P. (2013). Fundamentals of
fluid mechanics (7th ed.). Wiley: Singapore.

5. The Editors of Encyclopedia Britannica. (2016)
Turbulent flow. In Encyclopedia Britannica.
Retrieved from https://www.britannica.com/
science/turbulent-flow.

6. Metals and Alloys-Densities. (nd). The
Engineering Toolbox. https://www.engineering
toolbox.com/metal-alloys-densities-d_50.html



