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Abstract 
 

Water clocks measure time by controlling the flow of water into a container. Ancient Persians used the 
sinking time of Fenjaans, bowls with holes in the center, as a metric for time. The relationship between hole 
diameter and sinking time of cylindrical containers was investigated. A theoretical model was derived using 
Torricelli’s Law and Archimedes’ Principle. The experimental relationship was found by drilling holes with 
diameters ranging from 2 to 13 mm in the center of nearly cylindrical stainless-steel containers and 
measuring their sinking time. It was found that there was a proportional relationship between the sinking 
time and the inverse square of the hole diameter with a proportionality constant which matched, within 
uncertainties, the proportionality constant predicted by the theoretical model. 

 
Keywords: water clock, Torricelli’s Law, buoyancy, flow rate 

 
 
 
I. INTRODUCTION 
 
Water clocks were commonly used for time 
measurement around the world before the 
introduction of pendulum clocks. One of the earlier 
forms of a water clock was a bowl with a hole in 
the center of the base, known as a Fenjaan in 
Persian  (figure 1).  In ancient Persia, farmers used 
Fenjaans to ensure equitability in water 
distribution. The Fenjaans measured the time each 
farmer could open the irrigation channels to their 
fields.1 Even today, water clocks are still in use.  In 
southern Thailand, water clocks are used to time 
the rounds in traditional gamecock crowing 
competitions. 
 
This paper aims to develop a theoretical model for 
the relationship between hole diameter and sinking 

time of cylindrical stainless-steel containers, so 
that sinking time can be predicted given hole 
diameter and bowl dimensions. Though empirical 
data showing a correlation between hole diameter 
in containers and sinking time has been published,2 
this study aims to quantify the relationship and 
compare the theoretical model with the 
experimental results. 
 
Torricelli’s law states that the relationship between 
the velocity (v) of water which flows through a hole 
of small diameter, and the height of fluid above the 
position of the hole (h) is expressed by the 
formula,3  
 

𝑣 = #2𝑔ℎ  .             (1) 
 
In the situation normally covered by Torricelli's 
law, the water is flowing out of a hole in a 
stationary container, while in the case of this 
investigation, the water flows into the container as 
it sinks down into the water. Water clocks are 
effectively an inverse application of Torricelli’s 
law: the velocity of the water flowing into the 
container is predicted to be proportional to the root 
of the height difference between the water level 
inside and outside the container.  
 
For a stable floating container (figure 2a), the 
upward buoyant force is equal to the weight of the 
fluid that the body displaces, according to Figure 1. A Fenjaan sinking in water1. 
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Archimedes’ principle.4 For this investigation, the 
buoyant force and the weight acting on the 
container at the time when it is first placed in the 
water (ti), and just before sinking (tf), will be 
calculated using the assumption that there is no 
hole in the container. This approximation was 
made because the container sank at a slow rate 
where the acceleration was near zero. Under such 
an assumption, the weight (W) and buoyant force 
(Fb) for the sinking container at the beginning (ti), 
shown in figure 2a, can be expressed as equation 2, 
where Vw and rw are the volume and density of the 
container walls, Ac is the cross-sectional area of the 
container, rf is the density of the fluid, and h is the 
initial difference in the water levels,  
 

𝑉(r(𝑔 = 𝐴*ℎr+𝑔 .  (2) 
 
Rearranging the equation to solve for h, we obtain 
equation 3, 
 

ℎ =
,-r-
./r0

		.       (3) 

 
When the container is almost submerged (figure 
2b), the buoyant force on the walls of the container 
must be considered to determine the effective 
weight (Weff)  of the container. As most of the 
container is submerged in water, the weight of 
water displaced by the walls causes a buoyant force 
on the walls and decreases the effective weight. 
This gives equation 4 for the effective weight and 
buoyant force for the final time just before sinking,  

𝑉( 3r( − r+5 𝑔 = 𝐴*ℎr+𝑔 ,      (4) 
 
and equation 5 for the final height of the container, 
 

ℎ =
,-3r-6r05

./r0
  .          (5) 

 
The buoyant force decreases as more water fills the 
container, so the equation for the height, given a 
certain depth of water in the container (y) can be 
expressed as equation 6, where hc is the total height 
of container. 
 

ℎ =
,-3r-6r0

7
8/
5

./r0
		.             (6) 

 
Since the instantaneous flow rate (Q) is the product 
of the area of the hole (Ah  or  𝜋

:
𝑑<) and velocity (v) 

but also the product of the area of the container (Ac) 
and the instantaneous rate of change of the water 
level in the container  (dyc /dt), equation 7 can be 
obtained,  
 

𝑄 = 𝐴>𝑣 =
?
:
𝑑<#2𝑔ℎ = 𝐴*

@A/
@B
		.      (7) 

 
Rearranging equation 7 in terms of an integral of          
dyc /dt and substituting h from equation 6, gives 
 

∫ 𝑑𝑡 = ./
.8
E
./r0
<,-F

	∫ 	 G

Er-6		A	
r-
8/

		𝑑𝑦*
>/
I

B
I  .   (8) 

 
Solving the definite integral from y = 0 to y = hc, 
gives, 
 

𝑡 = J./
K
LM >/

?#<,-F
(E

r-
r0
− E

r-6r0
r0

) ×	𝑑6<  . (9) 

 
By substituting the values for the measurements of 
the container and the fluid used for this 
investigation into equation 9, the proportionality 
constant between the sinking time and the hole 
diameter for the tested container was determined to 
be, 
 

𝑡 = (1.02 ×	106S	𝑚<𝑠)𝑑6<	.    (10) 
 
While a proportional relationship between sinking 
time and the squared reciprocal of hole diameter is 
predicted, it is expected that there will be a 
threshold value for very small hole diameters 
where water can no longer flow through the hole 
due to adhesion and surface tension, the model will  

 

Figure 2. Diagrams for container sinking and 
simplified free body diagrams for ti (a) and tf (b). 
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then no longer be valid. In addition, viscous drag 
and the resulting turbulence in the fluid flow is 
expected to decrease the effective flow rate and 
increase the sinking time of the container 
systematically, compared to the times predicted by 
the model.5 
 
 
II. METHODS  
 
Six containers with dimensions shown in figure 3 
and mass of 83 ± 3 g were drilled with holes with 
diameters varying from 2 mm to 13 mm. Then, the 
sinking time of each of those containers was 
recorded six times. The containers were dried after 
each trial. The diameter of the container was 
measured at relevant points and the weighted 
average diameter was determined and used when 
calculating the proportionality constant in equation 
10. The density value of the stainless steel for the 
proportionality constant was obtained from the 
Engineering Toolbox.6 Measurement uncertainty 
was mainly affected by the timing uncertainty and 
centering of the drilled holes. Uncertainty in timing 
was estimated by determining the variability in 
multiple trials, while uncertainty due to errors in 
hole size and centering was estimated by drilling a 

5 mm hole in three separate containers and 
determining variability in sinking time of the three. 
 
 
III. RESULTS AND DISCUSSION  
 
Figure 4 and figure 5 show that hole diameter (d) 
and sinking time (t) for the container tested has the 
relationship, 
 

𝑡 = (1.07 ± 0.06 ×	106S	𝑚<𝑠)	𝑑6<  . (11) 
   
As shown in figure 5, the experimental fit is 
consistent with the theoretical model within 
uncertainties, with only a 5% difference between 
the experimental data and the theoretically 
predicted constant. This confirms the validity of 
the assumptions that energy loss due to turbulence 
and viscous drag were negligible, and that the hole 
diameters tested were in the range where 
Torricelli’s law is applicable. 
 
Bowls with larger holes consistently took slightly 
longer to sink compared to the derived theoretical 
model than the smaller holes, as shown in figure 6.   
The gradient generated from the first 4 points 
deviated largely, with a gradient 12% higher than 
the original and 18% higher than the theoretical 
gradient, showing that larger holes generally took 
longer to sink compared to smaller holes. It is 
possible that for larger holes, the assumption of 
negligible acceleration during sinking was invalid, 
causing the model’s predictions to be too low.  
Another possible explanation for the greater 
deviation from the model is that turbulence and 
viscosity effects had a more significant impact at 
larger hole diameters, although more work must be 

84.00±0.05 mm 

94.10±0.05 mm 

Figure 3. Dimensions of the container used. Container 
walls were 2.00 ± 0.05 mm thick. 

8±2 mm 

85.00±0.05 mm 

Figure 4. Empirical fit for the relationship between 
sinking time and hole diameter. 

Figure 5. Comparison between the empirical results 
and theoretical model for the relationship between 
sinking time and squared reciprocal of hole diameter. 
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done both theoretically and experimentally to 
confirm and explain this observation. The 
turbulence caused by the roughness in the drilled 
hole walls might have significantly increased 
energy losses and this would have increased the 
sinking time of the containers.  
 
Another factor that might have caused a deviation 
was the inconsistency in locating the center of the 
container in the drilling process.  Especially for the 
smaller diameter values, the container tilted to one 
side before the bottom of the container was fully 
covered with water, even causing minor 
oscillations at the beginning. As these factors were 
not considered in the derived model, it is possible 
that these factors caused the sinking time for the 
larger diameter holes to deviate from the 
theoretical model slightly more than the smaller 
holes.  
 
The theoretical model derived here is shown to be 
valid for hole diameters from 2 mm to 13 mm.  It 
is expected that viscosity is likely to be a factor 
increasing sinking time for very small holes. For 
relatively large holes the acceleration of the 
container may be non-negligible, rendering the 
model invalid. Further research is needed for 
values outside the range tested here, in order to 
construct a more comprehensive model for the 
relationship between hole diameter and sinking 
time.  

IV. CONCLUSION  
 
A theoretical model describing the relationship 
between the hole diameter and sinking time of a 
water clock was derived and tested for validity. It 
was shown that, for a nearly cylindrical metal 
container with dimensions shown in figure 1, and 
for hole diameters from 2 mm to 13 mm, there is a 
proportional relationship between inverse square 
of hole diameter and sinking time. The 
experimental proportional constant was shown to 
be 5% lower than the value predicted by the 
theoretical model, likely due to the unaccounted 
energy losses from viscous drag and turbulence as 
the water flows through the holes. 
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Figure 6.  The figure zoomed in to clearly show the 
deviation from the trend for the five largest holes, with 
times being relatively longer compared to the smallest 
holes. 

 

Figure 6. Figure zoomed to the first 5 data points. The 
red fit represents the gradient for first 4 data points. 


